Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.196
Filter
1.
PLoS One ; 19(4): e0299959, 2024.
Article in English | MEDLINE | ID: mdl-38656995

ABSTRACT

Hazardous chemical vehicles are specialized vehicles used for transporting flammable gases, medical waste, and liquid chemicals, among other dangerous chemical substances. During their transportation, there are risks of fire, explosion, and leakage of hazardous materials, posing serious threats to human safety and the environment. To mitigate these possible hazards and decrease their probability, this study proposes a lightweight object detection method for hazardous chemical vehicles based on the YOLOv7-tiny model.The method first introduces a lightweight feature extraction structure, E-GhostV2 network, into the trunk and neck of the model to achieve effective feature extraction while reducing the burden of the model. Additionally, the PConv is used in the model's backbone to effectively reduce redundant computations and memory access, thereby enhancing efficiency and feature extraction capabilities. Furthermore, to address the problem of performance degradation caused by overemphasizing high-quality samples, the model adopts the WIoU loss function, which balances the training effect of high-quality and low-quality samples, enhancing the model's robustness and generalization performance. Experimental results demonstrate that the improved model achieves satisfactory detection accuracy while reducing the number of model parameters, providing robust support for theoretical research and practical applications in the field of hazardous chemical vehicle object detection.


Subject(s)
Algorithms , Hazardous Substances , Hazardous Substances/analysis , Humans
2.
Environ Int ; 185: 108543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452464

ABSTRACT

Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1ß. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics.


Subject(s)
NF-kappa B , Neurotoxicity Syndromes , Animals , Mice , Anxiety/chemically induced , Hazardous Substances , Microplastics/toxicity , Plastics , Polystyrenes/toxicity
3.
Waste Manag ; 179: 99-109, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38471253

ABSTRACT

Fast co-pyrolysis offers a sustainable solution for upcycling polymer waste, including scrap tyre and plastics. Previous studies primarily focused on slow heating rates, neglecting synergistic mechanisms and sulphur transformation in co-pyrolysis with tyre. This research explored fast co-pyrolysis of scrap tyre with polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS) to understand synergistic effects and sulphur transformation mechanisms. A pronounced synergy was observed between scrap tyre and plastics, with the nature of the synergy being plastic-type dependent. Remarkably, blending 75 wt% PS or LDPE with tyre effectively eliminated sulphur-bearing compounds in the liquid product. This reduction in sulphur content can substantially mitigate the release of hazardous materials into the environment, emphasizing the environmental significance of co-pyrolysis. The synergy between PP or LDPE and tyre amplified the production of lighter hydrocarbons, while PS's interaction led to the creation of monocyclic aromatics. These findings offer insights into the intricate chemistry of scrap tyre and plastic interactions and highlight the potential of co-pyrolysis in waste management. By converting potential pollutants into valuable products, this method can significantly reduce the release of hazardous materials into the environment.


Subject(s)
Hot Temperature , Polyethylene , Polyethylene/chemistry , Pyrolysis , Polypropylenes , Polystyrenes , Sulfur , Hazardous Substances , Plastics/chemistry
4.
Ecotoxicol Environ Saf ; 275: 116221, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38547728

ABSTRACT

Photocatalysis is gaining prominence as a viable alternative to conventional biohazard treatment technologies. Two-dimensional (2D) nanomaterials have become crucial for fabricating novel photocatalysts due to their nanosheet architectures, large surface areas, and remarkable physicochemical properties. Furthermore, a variety of applications are possible with 2D nanomaterials, either in combination with other functional nanoparticles or by utilizing their inherent properties. Henceforth, the review commences its exploration into the synthesis of these materials, delving into their inherent properties and assessing their biocompatibility. Subsequently, an overview of mechanisms involved in the photocatalytic degradation of pollutants and the processes related to antimicrobial action is presented. As an integral part of our review, we conduct a systematic analysis of existing challenges and various types of 2D nanohybrid materials tailored for applications in the photocatalytic degradation of contaminants and the inactivation of pathogens through photocatalysis. This investigation will aid to contribute to the formulation of decision-making criteria and design principles for the next generation of 2D nanohybrid materials. Additionally, it is crucial to emphasize that further research is imperative for advancing our understanding of 2D nanohybrid materials.


Subject(s)
Environmental Pollutants , Nanoparticles , Nanostructures , Hazardous Substances , Systems Analysis
5.
J Occup Environ Hyg ; 21(4): 287-309, 2024.
Article in English | MEDLINE | ID: mdl-38451466

ABSTRACT

Environmental services (EVS) workers are essential to preventing the spread of disease in hospitals. However, their exposure to hazardous chemicals and drugs is understudied. This scoping review will synthesize literature on hazardous chemical exposures and adverse health outcomes among EVS workers to identify research gaps and trends for further investigation. The scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure complete and accurate reporting. The scoping review included 25 studies on occupational exposure to chemicals among EVS workers in hospitals. Most studies focused on exposure to cleaning products, which led to dermal, respiratory, and ocular symptoms, oxidative stress, and inflammation. While personal protective equipment (PPE), training, education, and policies have the potential to enhance safety, further research is required to examine the long-term impacts of exposure and the cost-effectiveness of interventions. Future studies should utilize longitudinal approaches and self-reported data collection methods, such as diaries and interviews, to comprehensively assess exposure risks and develop effective interventions and policies. Future research is needed to understand the potential health risks faced by EVS workers from exposure to chemicals in hospitals. Longitudinal studies with objective exposure assessments and larger sample sizes should be conducted. Policies and interventions must be developed and implemented to improve safe work practices and reduce negative health outcomes.


Subject(s)
Occupational Exposure , Humans , Occupational Exposure/analysis , Hazardous Substances/analysis , Personnel, Hospital , Hospitals , Outcome Assessment, Health Care
6.
Environ Pollut ; 348: 123736, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458521

ABSTRACT

Processing sewage sludge can be problematic due to its potential environmental toxicity. It may contain high concentrations of pharmaceuticals, polycyclic aromatic hydrocarbons, and heavy metals, as well as pathogenic microorganisms. However, it is a good source of organic matter and rich in microbial communities and enzymatic activity. This study deals with composting and vermicomposting of pre-composted mixtures of two different kinds of sewage sludge blended with moulded pulp in an operating composting plant. Of the total number and concentration of pollutants detected in individual piles, a large percentage of them were reduced by the composting process. The composting 2 process resulted in the greatest reduction in contaminating substances--a total of 19 substances by 4.39-90.4%. Some pharmaceuticals accumulated in earthworm bodies during vermicomposting; a total of 11 substances were detected. Atorvastatin showed the highest percentage reduction in compost 2 (90.4%), vermicompost 1 (65.2%) and vermicompost 2 (97.3%). Both composting and vermicomposting appeared to be effective for removal of heavy metals. A higher content of microbial phospholipid fatty acids (PLFAs) was found in composts than vermicomposts. There was a significant reduction in the content of pathogenic microorganisms in both processes, but the reduction in enterococci was not significant.


Subject(s)
Composting , Environmental Pollutants , Metals, Heavy , Oligochaeta , Animals , Sewage , Hazardous Substances , Soil , Fungi , Pharmaceutical Preparations
7.
Environ Int ; 186: 108585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521044

ABSTRACT

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Subject(s)
Environmental Exposure , Environmental Monitoring , Risk Assessment/methods , Humans , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Hazardous Substances/analysis , Mass Spectrometry/methods
8.
Ann Work Expo Health ; 68(4): 397-408, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38536905

ABSTRACT

BACKGROUND: This study was conducted as an effort to develop a Korean construction job exposure matrix (KoConJEM) based on 60 occupations recently consolidated by the construction workers mutual aid association for use by the construction industry. METHODS: The probability, intensity, and prevalence of exposure to 26 hazardous agents for 60 consolidated occupations were evaluated as binary (Yes/No) or four categories (1 to 4) by 30 industrial hygiene experts. The score for risk was calculated by multiplying the exposure intensity by the prevalence of exposure. Fleiss' kappa for each hazardous agent and occupation was used to determine agreement among the 30 experts. The JEM was expressed on a heatmap and a web-based dashboard to facilitate comparison of factors affecting exposure according to each occupation and hazardous agent. RESULTS: Awkward posture, heat/cold, heavy lifting, and noise were hazardous agents regarded as exposure is probable by at least one or more experts in all occupations, while exposure to asphalt fumes was considered hazardous in the smallest number of occupations (n = 5). Based on the degree of agreement among experts, more than half of the harmful factors and most occupations showed fair to good results. The highest risk value was 16 for awkward posture for most occupations other than safety officer. CONCLUSIONS: The KoConJEM provides information on the probability, intensity, and prevalence of exposure to harmful factors, including most occupations employing construction workers; therefore, it may be useful in the conduct of epidemiological studies on assessment of health risk for construction workers.


Subject(s)
Construction Industry , Occupational Exposure , Occupations , Humans , Occupational Exposure/statistics & numerical data , Occupational Exposure/analysis , Republic of Korea , Occupations/statistics & numerical data , Hazardous Substances/analysis , Risk Assessment/methods , Posture , Hydrocarbons/analysis , Judgment , Air Pollutants, Occupational/analysis , Occupational Health , Prevalence
10.
Article in Chinese | MEDLINE | ID: mdl-38403415

ABSTRACT

Objective: To conduct quantitative evaluation on the revise requirements of Specifications of Air Sampling for Hazardous Substances Monitoring in the Workplace (GBZ 159-2004) , clarify the problems and suggestions during its implementation for improvement, and provide a basis for the revision of the standard. Methods: From April to September 2021, stratified convenient sampling method was adopted and semi-open questionnaire was used to investigate the occupational health personnel in CDC, occupational prevention and control institutes, employers, third-party technical service institutions and universitie. The entropy weight of each index and the score based on entropy weight of GBZ 159 were calculated. Spearman rank correlation analysis was used to describe the correlation between the two indexes and radar chart was drawn for comprehensive evaluation. Results: A total of 151 questionnaires were received from the respondents, of which 147 were valid, with an effective recovery rate of 97.35%, involving 29 provinces, autonomous regions and municipalities. The median G scores of the necessity and urgency of GBZ 159 revision based on entropy weight were 2.84 and 3.17, respectively, and the difference was statistically significant (M=-25.50, P<0.001) . The trend of the score G of necessity and urgency based on entropy weight was basically the same for all secondary items (r(s)=0.9998, P<0.001) , and the score G of urgency based on entropy weight was higher than that of necessity. The highest score G of necessity and urgency based on entropy weight was "3.13 long time sampling", which were 7.56 and 8.23 respectively. This was followed by "3.12 short time sampling", which were 7.19 and 7.13 respectively. Conclusion: GBZ 159 has encountered some new problems and challenges in the implementation process, and some of its technical indicators have been out of line with the actual practice of occupational health at present. These are the two items that urgently needs to be revised and improved, such as "3.13 long time sampling" and "3.12 short time sampling" and other items need to be revised and improved.


Subject(s)
Occupational Exposure , Occupational Health , Humans , Hazardous Substances , Occupational Exposure/prevention & control , Workplace , Surveys and Questionnaires
11.
Article in Chinese | MEDLINE | ID: mdl-38403424

ABSTRACT

Systematically evaluate the implementation of Specifications of Air Sampling for Hazardous Substances Monitoring (GBZ 159-2004) , so as to provide technical basis for the future standard revision. The semi-structured interview method was used to interview the industry experts from centers for disease control and prevention, occupational disease prevention and control hospitals/institutes, employers, third-party technical service institutions and universities, and the induction method was used to refine the topics and relevant suggestions. Some technical indicators of GBZ 159 are not suitable for the current actual work of occupational health, and need to be revised and improved urgently. The revised GBZ 159 should comply with the current situation of China's industrial development and the development of occupational health testing equipment in the new era, and improve the relevant technical requirements of sampling quality control.


Subject(s)
Occupational Diseases , Occupational Exposure , Humans , Hazardous Substances/analysis , Occupational Exposure/prevention & control , Workplace , Industry
12.
Environ Toxicol Pharmacol ; 106: 104380, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309542

ABSTRACT

In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.


Subject(s)
Ecosystem , Ecotoxicology , Humans , Hazardous Substances/toxicity
13.
Toxicology ; 503: 153751, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354972

ABSTRACT

Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.


Subject(s)
Arsenic , Environmental Pollutants , Gastrointestinal Microbiome , Metals, Heavy , Humans , Animals , Metals, Heavy/toxicity , Arsenic/toxicity , Cadmium/toxicity , Environmental Pollutants/toxicity , Hazardous Substances , Mammals
14.
J Hazard Mater ; 468: 133830, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387180

ABSTRACT

The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health. However, they have remained refractive in different compartments of the environment. Their bioavailability is majorly a function of different anthropogenic activities. Landfilling and incineration are among the earliest classical means of environmental remediation of waste; however, they are not sustainable due to the seepage of contaminants in landfills, the release of toxic gases into the atmosphere and energy requirements during incineration. Other advanced waste destruction technologies have been explored for the degradation of these recalcitrant pollutants; although, some are efficient, but are limited by high amounts of energy consumption, the use of organic solvents and hazardous chemicals, high capital and operational cost, and lack of public trust. Thus, this study has systematically reviewed different contaminant degradation technologies, their efficiency, and feasibility. Finally, based on techno-economic feasibility, non-invasiveness, efficiency, and environmental friendliness; radiation technology can be considered a viable alternative for the environmental remediation of contaminants in all environmental matrices at bench-, pilot-, and industrial-scale.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Humans , Animals , Persistent Organic Pollutants , Temperature , Hazardous Substances , Technology
15.
Arch Toxicol ; 98(4): 1209-1224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311648

ABSTRACT

To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.


Subject(s)
Fluorocarbons , Fungicides, Industrial , Induced Pluripotent Stem Cells , Humans , Toxicity Tests/methods , Embryoid Bodies , Cell Differentiation , Hazardous Substances
16.
J Occup Health ; 66(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38332724

ABSTRACT

OBJECTIVES: Hazardous materials (HAZMAT) pose risks to the health and safety of professionals involved with transportation and emergency responses. Two distinct occupational groups that encounter HAZMAT events are first responders and professional drivers. Wearable technology is a tool that can assist with monitoring the health of professionals involved in HAZMAT events. The aim of this study was to compare and evaluate the perceptions of first responders and professional drivers on wearable technology and attitudes toward health monitoring. METHODS: A survey was administered to first responders (n = 112) and professional drivers (n = 218). Statistical approaches included bivariate analysis, latent class analysis, logistic regression analysis, and path analysis for the variables of interest. RESULTS: There were significant differences between the groups in perceptions of the benefits of monitoring certain health indicators. Professional drivers were more likely to have a history of wearable technology use compared with first responders (odds ratio [OR] = 10.1; 95% CI, 4.42-22.9), reported greater exposure to HAZMAT (OR = 4.32; 95% CI, 2.24-8.32), and were more willing to have their health data monitored by someone other than themselves (OR = 9.27; 95% CI, 3.67-23.4). A multinomial regression model revealed that occupation was not a significant predictor of class preference for acceptance of monitoring specific health indicators. CONCLUSIONS: Occupation appeared to be important but further analysis uncovered that characteristics of individuals within the occupations were more salient to the use of wearable technology. HAZMAT exposure, someone else monitoring health data, and experience with wearable technology use were found to be important factors for perceptions about benefits of health monitoring with wearable technology.


Subject(s)
Emergency Responders , Wearable Electronic Devices , Humans , Transportation , Hazardous Substances , Occupations
17.
Environ Sci Pollut Res Int ; 31(12): 18340-18361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349491

ABSTRACT

Cadmium (Cd) is a naturally occurring environmental pollutant, a toxic substance that causes oxidative stress. According to epidemiological studies, the data suggested that environmental and occupational Cd exposure may be related to several diseases and severe testicular damage. However, studies are going on to explore the mechanism of Cd-induced male reproductive toxicity and its treatment strategies. Currently, researchers are focusing on naturally occurring bioactive compounds, plant extracts, and biochemical, which have better efficacy, less toxicity, and high bioavailability. This review focuses on the mechanistic effect of Cd on testicular toxicity and different categories of compounds having a beneficial impact on Cd-induced male reproductive toxicity. Some potent bioactive antioxidants are quercetin, caffeic acid phenethyl ester, cyanidin-3-O-glucoside, curcumin, and silymarin. In comparison, plant extracts are Costus afer leaf methanol extract, methanol root extract of Carpolobia lutea, red carrot methanolic extract, Panax ginseng extract, and biochemicals including melatonin, progesterone, glutamine, L-carnitine, and selenium. Advanced and more detailed studies are needed on these compounds to explore their mechanism in attenuating Cd-induced testicular toxicity and can be potential therapeutics in the future.


Subject(s)
Cadmium Poisoning , Cadmium , Male , Humans , Cadmium/metabolism , Methanol , Testis , Antioxidants/metabolism , Oxidative Stress , Hazardous Substances/metabolism , Plant Extracts/pharmacology
18.
PLoS One ; 19(2): e0295165, 2024.
Article in English | MEDLINE | ID: mdl-38315710

ABSTRACT

BACKGROUND: Healthcare waste produced in healthcare activities entails higher risk of infection and injuries than municipal waste. In developing countries healthcare waste has not received much attention and has been disposed of together with municipal wastes. Modern method of disposal of healthcare waste have been introduced to most healthcare institutions mismanagement and increased in production in public health centres in Ethiopia is important issues. The aim of the study was to assess the type of healthcare waste generation and quantification in selected public health centres in Addis Ababa, Ethiopia. METHODS: An institution based cross-sectional study were conducted from January to February 2018. Fifteen health centres in Addis Ababa City Administration were selected for this study. Data were collected by using by different color plastic bags (Black plastic bags for non-hazardous wastes, Yellow plastic bags for hazardous wastes and Yellow safety box for needles and Red bags for pharmaceutical wastes and toxic wastes). The collected wastes were measured by weighing scale and were written to data entry sheet. To assure the data quality calibration of weighing scale was made by the standard weight every morning. EPI INFO TM7 and IBM SPSS were used for data entry, cleaning and analysis. RESULTS: The mean healthcare waste generation was 10.64+5.79Kg/day of which 37.26% (3.96+2.20Kg/day) was general waste and 62.74% (6.68+4.29) was hazardous waste from the studies health centres. Total hazardous waste; sharps, infectious, pathological and pharmaceutical wastes constitutes mean (±SD) 0.97 ±1.03, 3.23 ± 2.60, 2.17±1.92 and 0.25 ±0.34 kg/day respectively. Healthcare waste 29.93% and 0.32% were generated from delivery and post-natal case team and nutrition and growth monitoring case team respectively. The annual mean+ SD of healthcare waste generation rate per health centres were 3807.53+ 2109.84 Kg/year. CONCLUSION: The finding in this study showed there was an increased in hazardous healthcare waste in amount as compared to the WHO standard 85% non-hazardous waste and 10% hazardous waste and 5% toxic wastes. The healthcare waste management practices about segregation, collection, transportation and disposal at the source is crucial to decrease in quantity. Generally unselective handling and disposal of healthcare wastes is a concern.


Subject(s)
Medical Waste Disposal , Medical Waste , Waste Management , Medical Waste Disposal/methods , Public Health , Ethiopia , Cross-Sectional Studies , Medical Waste/analysis , Hazardous Substances , Hazardous Waste/analysis , Delivery of Health Care
19.
Crit Rev Toxicol ; 54(2): 92-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38363552

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.


Subject(s)
Polychlorinated Biphenyls , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/metabolism , Hydroxylation , Sulfates/toxicity , Sulfates/metabolism , Environmental Pollution , Hazardous Substances
20.
Environ Sci Pollut Res Int ; 31(10): 15126-15152, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38289557

ABSTRACT

Water treatment sludge (WTS) is produced daily and disposed of as hazardous material. It would be advisable to use locally available waste products as supplementary cementitious materials that ensure to be disposed of without harming the environment. As a novelty, this research investigated the potential of using recycled WTS with fly ash (FA) and ground-granulated blast furnace slag (BFS) as ternary blended binders. Thus, it can provide an economical solution and alleviate the adverse environmental effects of excessive production of wastes and cement production. Within this scope, the mortars with 0-30 wt% replacement of cement with modified WTS (MWTS) were produced as binary blend, and also, they were combined with FA/BFS as ternary blended binders. Therefore, optimum utilization of waste products into the mortar in terms of rheological, mechanical, durability, microstructural properties, and environmental-economical aspects was examined. Adding 10% recycled WTS as binary caused higher strengths with lower porosity measured by the mercury intrusion porosimeter test and denser microstructure, as revealed by XRD patterns and SEM results. However, the drawbacks of using recycled WTS, in terms of rheological parameters and environmental-economical aspects, were suppressed by adding FA/BFS with comparable strength values. Specifically, cost, CO2 footprint, and embodied energy were reduced by combining 10% MWTS with FA by 8.87%, 37.88%, and 33.07%, respectively, while 90-day compressive and flexural strength were 5.1% and 5.32% lower. This study developed a feasible solution to use recycled MWTS by obtaining more eco-friendly and cost-effective cement-based materials.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Sewage , Humans , Coal Ash , Waste Products , Hazardous Substances , Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...